Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetraphenylarsonium diisothiocyanatodibromonickelate(II)

S. S. Singh, ${ }^{\text {a }}$ R. S. Prasad, ${ }^{\text {a }}$

Shailesh Upreti, ${ }^{\text {b }}$ N. K. Jha ${ }^{\text {b }}$ and A. Ramanan ${ }^{\mathbf{b}_{*}}$
${ }^{\text {a }}$ Department of Chemistry, Vinoba Bhave University, Hazaribagh 825301, Zharkhand, India, and ${ }^{\text {b }}$ Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India

Correspondence e-mail:
aramanan@chemistry.iitd.ac.in

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.042$
$w R$ factor $=0.141$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Use of mixed-ligand (bromide and thiocyanate ions) coordination with nickel has led to the crystallization of the title compound, $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{As}\right)_{2}\left[\mathrm{Ni}(\mathrm{NCS})_{2} \mathrm{Br}_{2}\right]$. X-ray crystal structure analysis reveals that the asymmetric unit contains one $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{As}^{+}$cation and one half $\left[\mathrm{Ni}(\mathrm{NCS})_{2} \mathrm{Br}_{2}\right]^{2-}$ anion, the latter lying on a crystallographic twofold axis.

Comment

In view of our interest in the rational synthesis of mixed-ligand complex salts, for the first time single-crystal X-ray studies were conducted on mixed diisothiocyanatodibromonickelate(II) salts. The title compound, (I), and its analogues have been reported in the literature (Prasad et al., 1982). Studies of the reported compounds were limited to IR and UV spectroscopic techniques. Although the structures of simple tetrachloro-, tetraisothiocyanato-nickelates (II), and mixed tetrahalonickelates(II) are well known, a Cambridge Structural Database (Version 5.26, ConQuest Version 1.7; Allen, 2002) search showed that only a few tetrabromonickelatebased crystal structures are known so far (Bellefeuille et al., 1998; Yamochi et al., 2002). A comparison of the $\mathrm{Br}-\mathrm{Ni}-\mathrm{Br}$ bond angle in dibromodiisothiocyanatonickelate with that in tetrabromonickelate (Hitchcock et al., 2003) shows that the replacement of two bromides with isocyanates increases this angle from 103.92 (5) to $122.37(4)^{\circ}$. This is expected in view of the larger size of the bromide ligand compared to that of the nitrogen of the thiocyanate ligand. A crystallographic twofold rotation axis passes through the Ni atom.

[^0]Received 22 February 2006
Accepted 20 March 2006

Experimental

One of the starting materials, nickel(II) thiocyanate, was prepared in absolute ethanol by the metathetical reaction of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.290 \mathrm{~g})$ and KNCS $(0.194 \mathrm{~g})$ in the presence of a small amount of triethyl orthoformate. The title compound was prepared from the
interaction of nickel(II) thiocyanate (0.174 g) and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{AsBr}$ $(0.463 \mathrm{~g})$ in a $1: 2$ molar ratio in a $2: 1(v / v)$ mixture of acetonitrile and absolute ethanol. The compound obtained was recrystallized from acetonitrile. The crystals were isolated, washed with a small amount of acetonitrile and then with diethyl ether and dried in an open-air oven at 363-373 K.

Crystal data

$\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{As}\right)_{2}\left[\mathrm{NiBr}_{2}(\mathrm{CNS})_{2}\right]$	$D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1101.31$	Mo $K \alpha$ radiation
Monoclinic, $C 2 / c$	Cell parameters from 7590
$a=13.5382(10) \AA$	\quad reflections
$b=15.7796(11) \AA$	$\theta=2.4-27.2^{\circ}$
$c=23.0555(16) \AA$	$\mu=3.60 \mathrm{~mm}^{-1}$
$\beta=105.347(1)^{\circ}$	$T=273(2) \mathrm{K}$
$V=4749.7(6) \AA^{3}$	Plate, green
$Z=4$	$0.35 \times 0.22 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	4430 independent reflections
\quad diffractometer	3556 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.077$
Absorption correction: multi-scan	$\theta_{\max }=25.5^{\circ}$
$(S A D A B S ;$ Bruker, 2000 $)$	$h=-16 \rightarrow 16$
$T_{\min }=0.401, T_{\max }=0.711$	$k=-18 \rightarrow 19$
17670 measured reflections	$l=-27 \rightarrow 27$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0881 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$	$+1.9894 P]$
$w R\left(F^{2}\right)=0.141$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.08$	$(\Delta / \sigma)_{\max }=0.002$
4430 reflections	$\Delta \rho_{\max }=0.99 \mathrm{e}^{-3}$
267 parameters	$\Delta \rho_{\min }=-0.88 \mathrm{e}^{-3}$
H-atom parameters constrained	

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

As1-C1	$1.902(4)$	As1-C7	$1.912(4)$
As1-C19	$1.911(4)$	Ni1-N1	$1.973(5)$
As1-C13	$1.911(4)$	Ni1-Br1	$2.3787(6)$
C1-As1-C19	$110.05(17)$	$\mathrm{C} 13-\mathrm{As} 1-\mathrm{C} 7$	$106.97(16)$
$\mathrm{C} 1-\mathrm{As} 1-\mathrm{C} 13$	$111.13(17)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$105.2(3)$
$\mathrm{C} 19-\mathrm{As} 1-\mathrm{C} 13$	$109.14(18)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{Br} 1^{\mathrm{i}}$	$110.11(13)$
$\mathrm{C} 1-\mathrm{As} 1-\mathrm{C} 7$	$107.25(16)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{Br} 1$	$103.98(13)$
$\mathrm{C} 19-\mathrm{As} 1-\mathrm{C} 7$	$112.29(17)$	$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{Br} 1$	$122.37(4)$

Symmetry code: (i) $-x+2, y,-z+\frac{1}{2}$.

Figure 1
A view of the title compound, showing 50% probability displacement ellipsoids. Atoms labelled with the suffix A were generated by the symmetry code $\left(2-x, y, \frac{1}{2}-z\right)$. H atoms have been omitted.

H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000) and DIAMOND (Klaus, 1999); software used to prepare material for publication: SHELXTL.

AR acknowledges DST, Government of India, for funding a single-crystal diffractometer under FIST to the Department of Chemistry, IIT, Delhi.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bellefeuille, J. A., Grapperhaus, C. A., Buonomo, R. M., Reibenspies, J. H. \& Darensbourg, M. Y. (1998). Organometallics, 17, 4813-4821.
Bruker (2000). SHELXTL (Version 6.12) and SADABS (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART (Version 6.30) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.
Hitchcock, P. B., Lee, T. H. \& Leigh, G. J. (2003). Inorg. Chim. Acta, 355, $168-$ 174.

Klaus, B. (1999). DIAMOND. Version 1.2c. University of Bonn, Germany.
Prasad, R. S., Kumari, A. \& Jha, N. K. (1982). J. Indian Chem. Soc. 59, 207-209.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yamochi, H., Kawasaki, T., Nagata, Y., Maesato, M. \& Saito, G. (2002). Mol. Cryst. Liq. Cryst. Sci. Technol. A376, 113-120.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

